Home BLOOM
Post
Cancel

BLOOM

  • 📙Paper: BLOOM A 176B-Parameter Open-Access Multilingual Language Model
  • 📚Publisher: arxiv
  • 🏠Author Affiliation: BigScience
  • 🔑Public: ✅
  • 🌐Architecture
    • Encoder-Decoder
    • Decoder-Only
  • 📏Model Size
    • 176B
  • 🗂️Data pre-processing
    • Data Resource
      • Our pre-training dataset is based on a snapshot of selected public GitHub repositories taken on 2021/07/14.
    • De-duplication: ✅
    • Filter Strategies
      • /
  • 🍉Tokenizer
    • Technology
      • Byte-level Byte-Pair-Encoding (BBPE)
      • SentencePiece
    • Details
      • The tokenizer is a learned subword tokenizer trained using BBPE.
  • 🧪Hyperparameters (BLOOM 176B)
    • optimizer: Adam
      • betas: 0.9, 0.95
      • eps: 1e-8
    • batch size: 2,048
    • context window: 2,048
    • gradient accumulation steps: /
    • warmup steps: /
    • learning rate: 6e-5
    • weight decay: 0.1
    • decay schedule
      • Cosine
      • Linear
      • Polynomial
      • Inverse Square
    • precision floating point: bp16
  • 🏃‍♀️Training
    • model initialization: from scratch
    • training strategies
      • left-to-right
      • fill-in-the-middle
    • trained tokens/steps: 366B tokens
    • hardware: /
    • training time: /
This post is licensed under CC BY 4.0 by the author.

TorchDataEval

SecurityEval