Home CodeRL
Post
Cancel

CodeRL

  • 📙Paper: CodeRL: Mastering Code Generation through Pretrained Models and Deep Reinforcement Learning
  • 📚Publisher: NeurIPS
  • 🏠Author Affiliation: Salesforce Research
  • 🔑Public: ✅
  • 🌐Architecture
    • Encoder-Decoder
    • Decoder-Only
  • 📏Model Size
    • 770M
  • 🗂️Data pre-processing
    • Data Resource
      • APPS
    • De-duplication: /
    • Filter Strategies
      • /
  • 🍉Tokenizer
    • Technology
      • Byte-level Byte-Pair-Encoding (BBPE)
      • SentencePiece
    • Details
      • We adopt the code-specific tokenizer from Wang et al. [2021].
  • 🧪Hyperparameters (CodeRL 770M)
    • optimizer: AdamW
      • betas: /
      • eps: /
    • batch size: 64
    • context window: /
    • gradient accumulation steps: /
    • warmup steps: /
    • learning rate: /
    • weight decay: /
    • decay schedule
      • Cosine
      • Linear
      • Polynomial
      • Inverse Square
    • precision floating point: /
  • 🏃‍♀️Training
    • model initialization: CodeT5-large-ntp-py
    • training strategies
      • left-to-right
      • fill-in-the-middle
      • reinforcement learning
    • trained tokens/steps: /
    • hardware: 1 A100 GPU
    • training time: fine-tuned CodeT5-large 30 hours
This post is licensed under CC BY 4.0 by the author.

CodeComplex

PanGu-Coder