Home PLBART
Post
Cancel

PLBART

  • 📙Paper: Unified Pre-training for Program Understanding and Generation
  • 📚Publisher: NAACL
  • 🏠Author Affiliation: University of California
  • 🔑Public: ✅
  • 🌐Architecture
    • Encoder-Decoder
    • Decoder-Only
  • 📏Model Size
    • 140M; 406M
  • 🗂️Data pre-processing
    • Data Resource
      • We download all the GitHub repositories associated with Java and Python languages available on Google BigQuery
      • We collect the StackOverflow posts by downloading the data dump from stackexchange
    • De-duplication: ❌
    • Filter Strategies
      • /
  • 🍉Tokenizer
    • Technology
      • Byte-level Byte-Pair-Encoding (BBPE)
      • SentencePiece
    • Details
      • /
  • 🧪Hyperparameters (PLBART 406M)
    • optimizer: Adam
      • betas: −, 0.98
      • eps: 1e-6
    • batch size: /
    • context window: 768
    • gradient accumulation steps: /
    • warmup steps: /
    • learning rate: 5e-5
    • weight decay: /
    • decay schedule
      • Cosine
      • Linear
      • Polynomial
      • Inverse Square
    • precision floating point: fp16
  • 🏃‍♀️Training
    • model initialization: /
    • training strategies
      • left-to-right
      • fill-in-the-middle
    • trained tokens/steps: /
    • hardware: 8 Nvidia GeForce RTX 2080 Ti GPUs
    • training time: /
This post is licensed under CC BY 4.0 by the author.

GPT-Neo

GPT-J